Length-independent structural similarities enrich the antibody CDR canonical class model

نویسندگان

  • Jaroslaw Nowak
  • Terry Baker
  • Guy Georges
  • Sebastian Kelm
  • Stefan Klostermann
  • Jiye Shi
  • Sudharsan Sridharan
  • Charlotte M. Deane
چکیده

Complementarity-determining regions (CDRs) are antibody loops that make up the antigen binding site. Here, we show that all CDR types have structurally similar loops of different lengths. Based on these findings, we created length-independent canonical classes for the non-H3 CDRs. Our length variable structural clusters show strong sequence patterns suggesting either that they evolved from the same original structure or result from some form of convergence. We find that our length-independent method not only clusters a larger number of CDRs, but also predicts canonical class from sequence better than the standard length-dependent approach. To demonstrate the usefulness of our findings, we predicted cluster membership of CDR-L3 sequences from 3 next-generation sequencing datasets of the antibody repertoire (over 1,000,000 sequences). Using the length-independent clusters, we can structurally classify an additional 135,000 sequences, which represents a ∼20% improvement over the standard approach. This suggests that our length-independent canonical classes might be a highly prevalent feature of antibody space, and could substantially improve our ability to accurately predict the structure of novel CDRs identified by next-generation sequencing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Loop Modeling of the Antibody Complementarity-Determining Region 3 Using Knowledge-Based Restraints

Structural restrictions are present even in the most sequence diverse portions of antibodies, the complementary determining region (CDR) loops. Previous studies identified robust rules that define canonical structures for five of the six CDR loops, however the heavy chain CDR 3 (HCDR3) defies standard classification attempts. The HCDR3 loop can be subdivided into two domains referred to as the ...

متن کامل

ABodyBuilder: Automated antibody structure prediction with data–driven accuracy estimation

Computational modeling of antibody structures plays a critical role in therapeutic antibody design. Several antibody modeling pipelines exist, but no freely available methods currently model nanobodies, provide estimates of expected model accuracy, or highlight potential issues with the antibody's experimental development. Here, we describe our automated antibody modeling pipeline, ABodyBuilder...

متن کامل

Kotai Antibody Builder: automated high-resolution structural modeling of antibodies

MOTIVATION Kotai Antibody Builder is a Web service for tertiary structural modeling of antibody variable regions. It consists of three main steps: hybrid template selection by sequence alignment and canonical rules, 3D rendering of alignments and CDR-H3 loop modeling. For the last step, in addition to rule-based heuristics used to build the initial model, a refinement option is available that u...

متن کامل

The origin of CDR H3 structural diversity.

Antibody complementarity determining region (CDR) H3 loops are critical for adaptive immunological functions. Although the other five CDR loops adopt predictable canonical structures, H3 conformations have proven unclassifiable, other than an unusual C-terminal "kink" present in most antibodies. To determine why the majority of H3 loops are kinked and to learn whether non-antibody proteins have...

متن کامل

Canonical structures of short CDR-L3 in antibodies

Despite sequence diversity, five out of six hypervariable loops in antibodies assume a limited number of conformations called canonical structures. Their correct identification is essential for successful prediction of antibody structure. This in turn requires regular updates of the classification of canonical structures to match the expanding experimental database. Antibodies with the eight-re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016